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GEOMETRIC-OPTICS THEORY FOR COHERENT SCATTERING OF MICROWAVES
FROM THE OCEAN SURFACE

INTRODUCTION

In 1961 C. I. Beard (1) found that experimental values of the coherent reflected
field IEIE5 Pi are larger than the values given by the generally accepted theoretical formula,

- E E= exp [-2(27rg)2 ]

for values of g = (ah sin 4')/X greater than 0.1 radian. Here E is the average electric
field due to the "sea surface" SA, Ed is the field due to the direct wave, r is the smooth
sea reflection coefficient, Ah is the standard deviation of the sea-surface elevation, 4 is the
grazing angle, and X is the electromagnetic wavelength (Fig. 1).

Fig. 1-Ray reflection off of a random sea surface

The expression IE/ErFISA is the Gaussian theoretical curve (sometimes called the
"roughness factor") first published by W. S. Ament (2) in 1953. (Ament claims that
the result was derived by Pekeris and, independently, by MacFarlane in the 40's.) Since
then Ament's result has been obtained by numerous other workers. (See for example
Ref. 3.)

Manuscript submitted December 14, 1973.
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BROWN AND MILLER

The disagreement between theory and experiment has been unresolved for over a
decade; and it has been agreed generally that theoretical models based on geometric
optics could not yield a result more powerful than that of Arnent.

In this report we show that the coherent reflected field is given by

= exp [-2(2irg)2 j11[2(2xg)2 j

for 0 < g < 0.3, where 10 (x) is the modified Bessel function J0Qlx). We derive this
result using geometric optics, assuming a spherical wavefront incident on a Gaussian
collection S of sinusoidal surface waves. Further, IlEEr6 S agrees with Beard's experi-
mental curve (Fig. 2}, with a systematic difference in g of 10%. Beard has estimated that
wave elevations were within 10% of their correct values.

We show how If/E& 'ISA is obtained, assuming a plane wave front incident on a
Gaussian collection eA of norizontal strps.

BASIC ASSUMPTIONS AND DEFINITIONS

Suppose that T is an isotropic emitter of electromagnetic waves with wavelength X
situated at a distance h2 above the mean sea surface and that R is an isotropic receiver
which is at a distance h1, above the mean sea surface. We take the mean sea height to be
equal to zero. Suppose that the horizontal distance between T and R is d, where d is
small enough that the earth's curvature need not be considered (Fig. 3}. 'We assume

tO

w'L

0.3

Fig. 2-Comparison of theoretical and experimental results
for coherent forward scattering

that the sea surface can be described by some collection of functions S . To be more
specific, we assume that at any given moment the functions which we need to describe

2
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d

X11

T

Fid. R-flenmF'trv of rmu reflectinn

the sea surface locally are in S . Let T' be the image of T with respect to the tangent-
line through P, a typical reflection point on the sea surface. Let (Xnql, An2 - h2) be the
coordinates of T', so that the coordinates of P' are (An1 /2, T?2 /2). Note that when P is
on the s axis and we have specular reflection, qN = 712 = 0, i.e., the image of T through
the s axis is at T (0, -h 2 )- When we have this situation, let 4' be the angle TPO. It is
easy to see that d tan ' - It + h2. We remark that we will be using two independent
coordinate systems, viz., the s, y system and the -T,, 72 system with origin T.. Note that
the coordinates of 0 in the s, y system are (0, h2) in the 121, 122 system.

In this work we use geometric optics, that is, we assume that only waves reflected
from a favorable slope will reach the receiver and that the local angle of incidence will
equal the local angle of reflection. Further, we assume that all reflections occur in the
s, y plane. We also will assume that the sea surface is "slightly rough," so that over a
long period of time the collection of points T', the image of T1 = T, will form a closed
connected set which has no holes, that is, a closed, simply connected region. It will also
be assumed that T' is an interior point of .ITp.

The following definitions will be helpful:

t1 = "t + It2 - X172

t2 = 2h2 - X772

t3 = d - Age

3
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BROWN AND MILLER

d = d2 + [h + h2)2

= __. 

y = -2w cos 4'

=2 -2r sin 4
Note that ri is the specular distance RT.. The distance RV in general is r = Q2 + &12[

We will show later that under suitable conditions 7% is the center of symmetry of IT
and that if (Xn1, X42 ) E! then

X17X1 | X1, |2 | < < 
d h~~~~2

so that l T is bounded away from T and R. Let A be the smallest rectangle which con-
tainsg T and whose sides are parallel to the coordinate axes. Then in view of the previous
inequalities, is a neighborhood of T', i.e., the dimensions of R are small compared to
d and h2 . We then are justified in expanding r in a Taylor series about i =2 = 0 and
dropping terms higher than those of first order in n1 and r2, giving

2wr
- =7 't + + Yq M

If we define the row vector y [=Y1 72] and let q [ , we can write Eq. (1) as

2rr
70= + +n (2

CALCULATION OF THE ELECTRIC FIELD DUE TO A SINGLE REFLECTED RAY

The electric field E due to a single reflected ray is given by

E = E-Ifji exp i) exp Ll + a r r i (3j

where F is the complex reflection coefficient and E5 is the electric field due to the direct
wave which travels path length 5 given by

62 = d2 + (I2 - h1 )2

4
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We consider now the quantity 6/r and state the following.

Observation: If 2h2/d < 1 (< means less than or of the order of),

and

I1 < ,
d

then

r

Proof: Using Eq. (1),

[d2 + (h2 -h)2]1/2

r [d2 + (h2 + hl) 2] 1 /2
- 1 cos CO - X'q2 sin 4

[d2 + (h2 - ½)2 1 1/2

L d2 + (+2 + h.]2 32

[d2 + (h2 + hl)2]1/2 cs -[d2 + (h2 + h 12]112si 

Now

1 [d2 + (k2 + h1)2 J'/2 I d

and

[dI + n 7 I <: I x2 1 < II T12 | ,
I[d2 + (I2 + hlf)2l /2 Ih2 + i1 < h2

therefore

62 d2 + h2 + h2 - 2h, h
-- ~ 1 2 12

r 2 d2 + h2 + k2 + 2h, ha
1 2 2IIt

However, 2h2fd < 1 and h1/d <1 imply that 2hlh2 /d2 << 1, so that 6/r - 1.

We then are justified in writing Eq. (3) approximately as

( X F) ex[-(y X +arg r) ij

5

(4)



BROWN AND MILLER

It is not hard to see that I -(7 1, p72)' Since 4 T C S and R is small, we will make the
simplifying assumption that r = P(o, 0) = rT(^ i) T. For the surfaces we consider later
the point (0, 0) will be the center of symmetry of ! T' so that r = P() can be viewed as
some average in T Combining Eqs. (2) and (3) and defining

E0 = EI8P( )Iexp (2j--i) exp (-y0 i) exp [-i arg rP(0J

gives

E - 0 exp (-4yn) (51

We remark that 2h2/d < I and h1/d 4 I imply that (hI1 + h2 )/d 1/2, i.e., tan 4t 1/2,
so that 4 K 27g. Hence Eq. (5) is valid provided that

IN417| 1 s

"'12 1 < l

and

4 <27- .

A RESULT DUE TO AMENT

Suppose S A is the class of functions y H, where the sea elevation H is distributed
normally with standard deviation H and 2H I C< min thl , h2 ). This is equivalent to the
class of functions Ament used in Ref. 2, which is the class H(s) where H "varies so slowly
with s that, in the neighborhood of each s, the surface is approximately a plane parallel
to the s axis."* It is easy to see that for the class S A,

*An equivalent way of defining the class SA is the following:
Let 151) be a disjoint collection of open intervals such that

U L -,

j=1

where S is a set of measure zero and 3 is the real line. Define

{ if X (t L

Let ha9 be a sequence of real numbers, and define a simple function

f(x) = 3 K(X).
j=l

Let SA be the class of all simple functions (see Fig. 4).

6
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0 ~~~2H I,: 
T= {(Anli X 2 )1Irh=0, v2= y}

so that in this case J1 = IT a degenerate rectangle. Hence 'y? = y2 %2 -4irH (sip 4j/,
so that from Eq. (5) we have

/4?TiH sin *
E(H) = E0 exp ( s 4' 

(47rH sin ' \ 4 i(4 r sin )
= EO cost 2 ) sint K~ ~ 6

The average electric field E due to the class EA is given by

H H ) exp / 2 dH

fH 0 / H

H~o (1 H2 )d I exp k 72w dH

If we substitute Eq. (6) into this equation, it is easy to see that we get

(/ 1 1H2 \ /47rH sin4/\J exp -2 -) cosi B dH
f_ 2a A /E = EH

C° ( I H2 )dH f 

To evaluate these integrals, we will let Ho - c The error we make will not bearge,
since the cosine function is bounded and the distribution tends to zero quickly when Ug
is small. Performing the required integrations and noting that 1EO I = I r(@) I gives

Fig. 4-Typical simple function

7



BROWN AND MILLER

(7)IE:C F I = A sp [_2 si ]
Ament derived this result for a plane incident wave and the class 8 A - We have made the
assumption that the incident wave front is spherical. However, if we are considering a
plane wave, then r- f(4) in iT and we have Ament's result.

CALCULATION OF THE IMAGE DUE TO THE CLASS S

We assume now that the sea surface can be described by a Gaussian collection S of
sinusoidal waves y = H sin [(27r/f)(s + S }J, where the sea-wave peak height H > U is
normally distributed, p is the sea-wave wavelength, and s is the sea-wave phase, which is
distributed uniformly.

Let P= (2ir/)s + s ), and note (Fig. 5) that the coorainates of P are (s, H sin P.
The image j T is determined by the following three equations:

tl(d - s) = t 3(h1 - H sin i);

2w1HT2 cosg = An, -

(8)

(9)

(1Y)27rH(\T71 - 2s) COS ( = A(gX2 - 2H sin () .

Fig. 5-Individual sinusoidal wave showing amplitude and phase

Equation (8) is the condition that T', P and R lie in a straight line; Eq. (9) is the con-
dition that the line through P' and P is perpendicular to the line through P and T; and
Eq. (10) is the condition that the slope of y = H sin ( at P is equal to the slope of the
line through P' and P.

We now state the following observation.

8
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Observation: If

47rsH
c< 1 ,

721A

2H
-- < I,
h-2

2h2

d
< 1, hi + h2 < 1

d 21

HIT = {(qi X2) =2H 27rh2 Cos 0 = j(niX 2)fi 1?1 cos j2 ~ a mh2 cos 4 cos 0) I
A /

where , C [0, 2ir]. (a means "the boundary of. "J

We remark that the relations (11) are equivalent to the following:

H
27r- < 1 ,

A

K 2 ( 2 27 Cos )

2 < 1 h1 +h2 1,d - ~~d

4irsH 2H- cosj + - sin < 1,
h2 p h

(12a)

/ C E°0, 21r3. (12b)

The relations of (11) imply those of (12) since gs D s/h2 > 1 (for example, when
H = 0, s/h2 = d/(h1 + h2) > 1, so that certainly ¶/ s/h2 > 1, end 2sfh2 > 1; thus

v\/ (2 irk I 1, I-C

Relations (12) imply (11), for when j = 7r/2, we have 2Hf/h2 < 1.

When jJ = 0,

K = 2(27r-) 47rsH I <- c1.

Hence we must have ;

2(2ir H)2 << 1,kg'

which implies that

then I T is approximately an ellipse and

(11)

or

4irsH
- 1

h 2 /

2 2irH)
( ) 4irsH

h2M fi

2wr-HI
S

h2

9

2H (sing -
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BROWN AND MILLER

But

H
2")H - - t- 

P

and so

5

h2

a result which is not always true. Hence

4irsH
- -P 1.
h2p

Further, if we eliminate the parameter (3, we have

= qAn }
where

[(A-t)2
A =

cot 'P

+ cot2 4 cot 4t

_

Proof: From Eqs. (9) and (10) respectively,

2w- Cos i = An1 IP h' ( 2 -=4')'
2

X12 2 .
T-T -T' - sin p

P xArk 2s

it2 it2

Eliminating )X1, fi2 from these equations gives

H
2wr- costl 

'L

X'Q2 ?. -K =ws~~in Ah2 

2w- (2 - 2 ) cos -
P \ i2 / it2

10

and

(13I

ail =j(Xn�1-Xn2)j (�� 2
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Solving for 'Xi2 lh2 gives

2(27r cos3) Cos t)
2H

+ - sin g
hait2

h2

Hence

1 + (27wH
L A 

I + (27TH cos t)2

cos) ] I 2

and it is clear then that

1 h2 1

Now we can write Eq. (13) as

H
2wr- Cos 3 =

Y

X\q1 1

2h2 1- 2

2h2

and since IX72/2h 2 I < 1, we have approximately

= 4ir 2H 
171 = Cos .

From Eq. (8) and (10) respectively,

__2 = H sin (
2

H 3X7
+ 2 cr cos I

A 2

a = h2 _'-Aq 2 (H sin 0 - hj) + d .

Eliminating Amj from Eqs. (14) and (15) gives

2
H 2

2wr- cos f h2 -
A

H
(2T-

p
Cos 9)

(16)

s; (17)

Equation (16) can be written as

11

and

(14)

(15)

- 2s (27r -H
72 A



BROWN AND MILLER

d
s = (Hsintsh1 + h2

Clearly

and since from Eq. (14)

- h1 ) (1

I A7
2

hi + h2

d )

I4<1 I

= 12 [27 OS c2 je <

we can write Eq. (18) approximately as

s = +h -- sin - hit) + d

=ent W + H din 61
F - - rhave

From Eqs. (17) and (19), we have

2
= Hsinfl +

/H
-_ 2w

[H
(27r

A

cos t) H cot 0 Sing .

2

Co ) cos s) h2 cot 2

Since

/H
2pr-

( 1
co0S) Hcot4'sin/3

(27w coS s' h 2 cot4 
K p - _ H sinp < I{ it2 I

12

+ d. (18)

(19)

(20>

- (2,fl H
p
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2

h2 H + h\
___= ~2w-J(' 2JCosj l

iM' a! I

• (2wfH) (+h2) 

we can write Eq. (20) approximately as

2 = H sing3 -
2r

and so

712 = A, (sin a

/H
(27w- Cos/3 h 2 cot A,

- -ch cot Cost
A

We easily can verify that

and check that it is indeed an ellipse. The family of ellipses is shown in Fig. 6. If we
let: = 7r/2, 3Sw/2, we obtain the interesting result that I T (Class S } n {y axis.}= OT
(Class SA), so that the major axis of the ellipse (2H/X)2 = /'A must be greater than 4H/X.

AVERAGE ELECTRIC FIELD DUE TO THE CLASS S

For a given H and A, the electric field due to a single reflected ray is given by Eq.
(5): E = E4 exp (-Pyq). We easily find that

4irH= -y - s in 4 sin /

so that

E(H, /) = E£ exp - sin;1 sin (22

When j3 = 7T/2, 3wr/2, we get Eq. (6). The physical interpretation of 'yq is shown in
Fig. 7.

13
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R

T __O~~~

Fig. 6-Family of image ellipses

R
T

Fig, 7-Path length from an arbitrary point on an image
ellipse to the receiver, which determines phase

14
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We now define

13=2

E (H) -

E(H,/ ) ds

(23)J /-=2T

3=o

Equation (23) gives the average elective field due to all reflections such that T' is in
a9T-

We recall that

2ir
1 = -(s + s)

A

and

s = cot 4'(h2 + Hsin 3),

so that

2w = h2 cot4' + Hcot4 sin/3 + s

Taking differentials in this last equation gives

A do = Hcot 4 cosfldo + ds,
2wr

so that

d = ( -2 H cot 4 cos f) do .

Hence

E(H, /) (A2 - H cot 4 cos /)d/

(pu

( T2w- -H cot 4 cosfl)cus

X(H, /) d/ -H cot k
A

P=2ir

f E(H, O) cos $ a
J30

r/3-

15

J 0=2w

/=0
E (H)

Jp, =27T

1=0

1 ± =2
= 2v f I= o

=



BROWN AND MILLER

But E(H, ' is a function of sin g, so that

| tH,/ p3) cos p p g E(Hi,3)d a sin P U
(3=0 43=0

Hence

1(H) 1 E(HJ9) d43,
21r

an arut npej-JSIUrIg bhle ECquneu llewgraulull wV un

E(t) = EOJO 4, sin 4) (24>

where J0 is the Bessel function of order 0. Note that g does not appear in Eq. (241.

Now let E be the average electric field due to the Gaussian collection of al sinusoidal
waves, i.e.,

H=H0 1 H2
-{Hzqkk(H)exp (4{)d- Hd

E - H H (25)j H=H0 itH 2

exp _ J dH
H=O 2 H

wbk~r 9T-C 4 nin fit. ,h3 }nnd n.. iS the gtrnnar-t1uAivintin in t_ h nPnIF hpivht W

Substituting Eq. (24) into Eq. (25) gives

-S 1(4f f sin 0) exp -2 )d/

E =E0 J1 = 1 e!± lH=H0 X k2
exp -__ 4dH

As before, we let H0o + without making a large error, and on performing the required
integrations (and noting that Et0 1 = IEt6 Ft), we obtain

T E [2wraXsin4')21 -1 (2wH sin )2]

where 1(x) is the modified Bessel function Jo(0 x)

16
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If oh is the standard deviation of the sea elevation, then, since we have considered
sinusoidal waves, it is clear that H = Vb2 h (Fig. 8). Hence we can write

r I ta r- I % A-l

| E r|-exp [ (2A 0 )sin 2 ] 0o [ 2(2ah sin A 2

H; 
Fig. 8-Relationship between standard deviation in
peak height, aH, and standard deviation in elevation,
U., for a sinusoidal wave

We remark that the use of sinusoidal surface waves is a mechanism for obtaining a:rich
snurce nf wavie-hpiorht wave-slonpe nAirs Wiirthr it seemq that i w.e obtmin enolk:4if thsaa
pairs distributed in the right way to describe the sea surface over a long period of'time.

To sum up we provide the following tabulation:

Table 1
Coherent Field for Various Sea-Surface/Incident-Wave Combinations

Sea Surface I Incident Wave [ Result

Simple functions Plane Ament: i/E r I"A

Simple functions Spherical Ament: IF/Es Cl IA

Sinusoidal waves Plane Ament-like: IEIEB 8lr
Sinusoidal waves Spherical if/EB r F

Z.h fmlen-1 f l uk 10 UiQ.taiICu by aUbLItuLIi HU1 = V aUh in

= exp [-2 (21r07 sin V) ]
giving

| E | = exp [-4 (2h sin ) 1
Eel~ 5K=ex

-A't

17



BROWN AND MILLER

This is justified since when the incident wave is plane, the only reflections that can occr
are off the peaks and troughs (assuming no shadowing) of the waves (Fig. 9).

Fig. 9-Reflection points for a plan incident wave

A RERSTYT nflr TOBECKMANN

Since the completion of this work, it has been realized that another, but different1
theoretical treatment based on geometric optics had been done previously by Beckmann
(4)*. Beckmann's report was undertaken to try to calculate theoretically the effect of
spherical-wavefront illumination for comparison with Beard's experimental results of the
statistics of the incoherent field scattered from a random water surface (5). In the
process of calculating the incoherent field, Beckmann also derived expressions for the
coherent field. It seems that these were not pursued at the time since the interest was
i Uie LbLst1cs 01 tihe incunerent neIu. neciUann OULtaUneu

| L = exp(-K) [i + ; 1Fi2(-; ;K)j

K = (IOa'h sint

rrhre h Fa 1ti9; Ot9; KC js a nnfilntf h-nartenmnric ftuncnnio. 1e -ave ,w~rafct- +WIK
result from Ref. 4, Eqs. (49), (50), (51), and (85). Numerical computations indicate that

| F-ar I 9< I R-§ L r I < I F`Xr I s
for 0.1 < g < 0.3.
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